Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a
b, then a and b are an amicable pair and each of a and b are called amicable numbers.
If d(a) = b and d(b) = a, where a
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
Solution:
Solution:
it's a very easy problem, Here's the java code:
public class Prob21 {
public static void main(String[] args)
{
int sum = 0;
for(int i = 2; i < 10000 ; i++)
{
if(amicable_checker(i))
{
sum+=i;
}
}
System.out.println(sum);
}
public static int propDivSumFinder(int n)
{ int sum =0;
for(int i =1; i< n/1 ; i++)
{
if(n%i == 0)
sum += i;
}
return sum;
}
public static boolean amicable_checker(int a)
{
int b;
b = propDivSumFinder(a);
if(a!=b)
{
if(propDivSumFinder(b) == a)
{
return true;
}
else
return false;
}
return false;
}
}
No comments:
Post a Comment