Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
Solution:
Solution:
it's a very easy problem, Here's the java code:
public class Prob21 { public static void main(String[] args) { int sum = 0; for(int i = 2; i < 10000 ; i++) { if(amicable_checker(i)) { sum+=i; } } System.out.println(sum); } public static int propDivSumFinder(int n) { int sum =0; for(int i =1; i< n/1 ; i++) { if(n%i == 0) sum += i; } return sum; } public static boolean amicable_checker(int a) { int b; b = propDivSumFinder(a); if(a!=b) { if(propDivSumFinder(b) == a) { return true; } else return false; } return false; } }
No comments:
Post a Comment